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Classification of amino acids based on statistical results of known structures and cooperativity
of protein folding
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It has been found that the 20 kinds of amino acids have different frequencies of occurrence ina,b, and coil
structures@P. Y. Chou and G. D. Fasman, Biochemistry13, 211 ~1974!#. Based on more known structures of
proteins, frequencies for each amino acid ina andb secondary structures are recalculated. Next step, under the
approximation ignoring the chain connectivity of proteins, energy parameters to forma and b secondary
structures for each amino acid are obtained. According to the hydrophobicity and energies ina andb second-
ary structures, 20 kinds of amino acids are classified. The results suggest that dividing amino acids to five or
nine groups is desirable. At last, a protein model considering both two-body hydrophobic interaction and
one-body energy to form secondary structures, hydrophobic-polarab model, is introduced. It is shown that the
consistency among various energy terms makes the cooperativity of protein folding closer to the experiments.

DOI: 10.1103/PhysRevE.65.061907 PACS number~s!: 87.14.Ee, 87.15.Aa, 02.70.Rr
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I. INTRODUCTION

Native structure of a protein is the global minimum
free energy@1,2#. To study protein folding problems theoret
cally, an appropriate description of both the structure o
protein and the intramolecular interactions is necessary.
teins are composed of 20 different kinds of amino acids, e
amino acid contains several atoms. The interactions betw
amino acids are very complicated. Molecular mechan
force field is useful for studying the structures and dynam
of proteins near their native states. However, it is not app
priate to study the complete conformation space of a pro
because of the current computer capability. And it is diffic
to tell us what kind of interaction is important for prote
folding.

Now most of the theoretical studies of protein foldin
involve both simplified protein models and effective intera
tions. In simplified models, several atoms, such as a resi
are treated as a bead. The potentials of some models
artificial, such as Gōmodel @3# and random energy mode
@4#, while some potentials come from statistical results
known structures of proteins. Now three-dimensional~3D!
structures of more than ten thousand proteins have been
tained by x-ray or nuclear magnetic resonance experime
methods. Statistics of these known structures can tel
some information about the hidden interactions. Miyaza
and Jernigan obtained a two-body inter-residue interac
matrix ~MJ matrix! from the numbers of residue-residue co
tacts observed in native structures of globular proteins@5#.
The residues in the core of native structure have more r
dues in contact with them than the residues on the surf
Hydrophobic residues like to avoid water molecules and h
themselves in the core, while polar residues like to con
water molecules and appear on the surface. Therefore, in
matrix, interactions between hydrophobic residues are st
ger than those between polar residues and those betw
hydrophobic residue and polar residue. From MJ matrix,
et al. @6# found that the driving force of protein folding
comes from hydrophobic interaction and a force of dem
ing, and the 20 kinds of amino acids can be classified
1063-651X/2002/65~6!/061907~7!/$20.00 65 0619
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polar and hydrophobic amino acids, which is consistent w
an HP~hydrophobic-polar! model.

More than 20 years ago, Chou and Fansman@7# found
that different amino acids have different opportunities to a
pear in different regular secondary structures (a helix andb
sheet!. The result has been used to predict the second
structures of polypeptides@8#. a helix andb sheet are both
local conformations. Local conformation of main chain
described by the dihedral anglesw and c @1,9#. In Ram-
achandran plots, the (w,c) distributions are clustered into
three core regions corresponding toa, b, andaL ~left-hand
a) structures.aL region is much smaller than the other tw
Therefore, different (w,c) distributions for different amino
acids reflect their different affinities toa helix andb sheet.
The statistical result of Chou and Fansman is the coa
grained result of Ramachandran plot and can be easily q
tified. In this paper, like the work of Miyazawa and Jernig
@5#, we can obtain a one-body energy term for each am
acid in a helices andb sheets. To obtain this secondar
structure-related energy term, more recent data are cou
as Chou and Fansman.

One source of the complexity of protein folding proble
is the fact that there are 20 kinds of amino acids. Traditio
ally, the 20 kinds of amino acids are classified to seve
classes~hydrophobic, charged, and polar! according to their
chemical nature@10#. This classification is based on th
chemical property of amino acids in water. But the enviro
ment around one amino acid in protein’s native structure
different from water solution of amino acid monomer
Therefore, this classification is not appropriate to descr
the roles of amino acids in protein’s native structure. R
cently, both experimentalists and theoreticians have inter
to find out how many~less than 20! types of amino acids are
enough to reconstruct protein’s native structure@11–15#.
Simplifying the 20-letter alphabet to a two-letter alphab
such as the HP model is the limit of simplification, becau
one-letter homopolymer does not have unique native st
tures like proteins. However, experimental work of Ridd
and co-workers@11# showed that more than two kinds o
amino acids are needed for proteins to fold to their nat
©2002 The American Physical Society07-1
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HU CHEN, XIN ZHOU, AND ZHONG-CAN OU-YANG PHYSICAL REVIEW E65 061907
structures. Theoretically, based on the MJ interaction ma
Wang and Wang’s work@14# showed that a five-letter alpha
bet may be a good choice to reconstruct protein’s na
structure and their result is in agreement with the sugges
of Riddleet al. Recently, work of Zheng and co-workers@15#
based on MJ matrix and blocks substitution mat
~BLOSUM! @16# obtained different results. The result of e
perimental work is confined to the studied protein. Therefo
it is unknown if the result is the same for other proteins.

Most of the theoretical works are based on the simplifi
contact energy between residues. Recently, Vendruscolo
co-workers@17# tried to learn the energy parameters fro
crystal structures of proteins. They found that only pairw
contact interaction is not sufficient to stabilize the nat
states of proteins. The simplified amino acids alphabet
interactions not only need to stabilize the native structure
protein, but also need to satisfy the thermodynamic and
netic property of real proteins. Folding transition of mo
global single domain proteins is calorimetric two sta
@18,19#. The quantitative criterion for calorimetric two-sta
transition is that the van’t Hoff enthalpy,DHvH , calculated
at the peak of the specific heat, is approximately equal to
calorimetric enthalpyDHcal of the entire transition, i.e.
DHvH /DHcal'1. Recently, it was found that the pairwis
contact interaction is insufficient to satisfy the calorimet
criteria for two-state folding@20,21# even a 20-letter alpha
bet. So some other energy components are necessary.

In the present work, we try to classify the 20 kinds
amino acids according to their hydrophobicities and differ
affinities toa helix andb sheet. Conceptually based on th
result of classification, we introduce a model of protein fo
ing, in which not only two-body hydrophobic interaction lik
that in the HP model, but also a one-body energy compon
related to the formation of secondary structures is con
ered. This energy term can lead thermodynamic behav
closer to experimental results.

II. ENERGY IN SECONDARY STRUCTURES

Since the work of Chou and Fansman@7#, the data of
protein 3D structures have increased many times. And s
secondary databases have been established. Kabsch
Sander@22# designed a program to standardize second
structure assignment by pattern recognition of hydrog
bonds. They established the database of secondary stru
in proteins~DSSP! that assigns secondary structures for
protein entries in the protein data bank~PDB!. Therefore,
DSSP is an appropriate database for us to count the app
ance frequencies of different amino acids in different seco
ary structures.

There are more than ten thousand entries in PDB,
most of them are homologous sequences. Therefore, we
not count all the proteins in PDB. Hobohm and Sander@23#
established the pdbselect database, a subset of PDB that
not contain homologous sequences. Pdbselect database
a representative selection that is about a factor of 5 o
smaller than PDB database. Here we use the pdbselect
base Feb. 2001 release. It contains 1520 chains compos
proteins, DNAs, and RNAs. We download the correspond
06190
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1419 protein entries in DSSP, and count amino acids in
chains included in the pdbselect database. The results
shown in Table I. The original work of Chou and Fansm
only involved 15 proteins, and the number of all amino ac
is 2473. Now the sampler space is 100 times bigger w
total number of amino acids 248 848. Here we consider o
a helices andb sheets, and all others are thought to be c
The result is approximately consistent with that of Chou a
Fasman@7# ~Fig. 1!. However, in the present results mo
frequencies of amino acids inb sheets are bigger, and th
frequencies ina helices are smaller than the results of Ch
and Fasman. Because the number of samples is 100 t
more, the present results are more accurate.

TABLE I. The statistical results for 20 kinds of amino acid
The hydrophobic parameterhi comes from the paper of Liet al. @6#.

Name No. of Residues Residues Ea Eb hi

residues ina helix in b sheet (kBT) (kBT) (kBT)

Ala (A) 19376 8728 3093 21.56 20.91 21.43
Arg (R) 12274 4589 2374 21.27 20.99 20.85
Asn (N) 11314 2590 1488 20.39 20.22 20.87
Asp (D) 14419 3817 1587 20.56 20.06 20.61
Cys (C) 4526 1008 1288 20.62 21.25 22.34
Gln (Q) 9834 4032 1630 21.38 20.86 20.69
Glu (E) 16135 6939 2430 21.44 20.77 20.55
Gly (G) 18127 2445 2556 0.26 20.16 20.99
His (H) 5785 1579 1203 20.77 20.88 21.33
Ile (I ) 14065 4829 5187 21.59 22.05 23.27
Leu (L) 21713 9232 5161 21.65 21.45 23.70
Lys (K) 15612 5495 2720 21.12 20.80 20.42
Met (M ) 5330 2131 1122 21.44 21.18 22.79
Phe (F) 9959 3108 3094 21.23 21.60 23.65
Pro (P) 11383 1410 1032 0.43 0.3621.03
Ser (S) 15152 3620 2684 20.52 20.61 20.80
Thr (T) 14202 3425 3667 20.69 21.14 21.05
Trp (W) 3621 1226 992 21.28 21.45 22.57
Tyr (Y) 8819 2593 2837 21.15 21.62 22.07
Val (V) 17202 5011 6931 21.37 22.07 22.70
All 248848 77807 53076 21.00 21.00

FIG. 1. The statistical results of Chan and Fasman vs our res
based on more structural data.
7-2
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CLASSIFICATION OF AMINO ACIDS BASED ON . . . PHYSICAL REVIEW E65 061907
Under coarse-grained treatment of local conformatio
each amino acid has three states:a helix, b sheet, and coil.
Not considering the 3D structure of a protein, we pay att
tion to the secondary structures in the protein’s native str
ture. Then the native structure can be described by a o
dimensional vector whose component is the state of e
amino acid. There are three kinds of states (a, b, and coil!
the amino acid can occupy. We assume that there are t
effective energy levels for each amino acid according toa
helix, b sheet, and coil states, respectively. The degenera
of the three states hold as constants for all amino acids, w
the three energy levels are different for different amino ac

Each amino acid distributes in these three kinds of sta
the distribution can be obtained from the observed na
structures. The observed distributions of amino acids in
three states can reflect the effective energy levels.

In a certain protein, the state of each amino acid is de
mined not only by the amino acid itself, but also by t
whole protein sequence. To stabilize the native struct
there are correlations in the sequence of a protein@24#. But,
the statistical results are based on more than one thou
proteins. Therefore, there is no significant contribution fro
the specific amino acid sequence of a certain protein in
statistical results. The statistical results can reflect the th
hidden effective energy levels for each amino acid. The
proximation of ignoring the correlation in a sequence, or
chain connectivity, can be treated as a first-order approxi
tion to obtain the hidden effective energy levels from t
known structures. The work of Miyazawa and Jernigan@5# is
also based on this approximation.

First, not distinguishing which amino acid is concerne
we introduce a partition function to describe the amino ac
distributing in the states ofa helix, b sheet, and coil (c).
The partition function takes the form

Z5 (
i 5a,b,c

V i exp~2Ei !, ~1!

where V i is the degeneracy of thei th kind of secondary
structure (V i is normalized, so that( i 5a,b,cV i51), Ei is
the energy advantage of thei th kind of secondary structur
with unit kBT0 . kB is Boltzmann constant andT0 is absolute
physiological temperature. Similarly, we can construct
partition function of one kind of amino acid. The degene
cies of the three states are the same for all amino acids.
partition function of thekth amino acid takes the form

Zk5 (
i 5a,b,c

V i exp~2Ei
k!, ~2!

whereEi
k is the energy of amino acidk in the i th secondary

structure.
In regular secondary structures (a helix and b sheet!,

hydrogen bonds always exist between the main chains.
hydrogen bonds are important for the stability of regular s
ondary structures. Among the inter-residue interactions
proteins, such as van der Waals interactions, electrostati
teractions, hydrophobic interactions, and hydrogen bon
only the formation of hydrogen bonds depends on the spe
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orientation of the interacting groups. In a secondary str
ture, regular arrangement of the residues is advantageou
the formation of main chain hydrogen bonds@25,26#. Ac-
cording to the strength of the hydrogen bond@27#, we set the
average energy advantage of one amino acid in regular
ondary structures, such asa helix and b sheet, as21;
and energy of amino acid in coil as zero, i.e.,Ea5
Eb521, Ecoil5Ecoil

k 50. We can use the statistical re
sults above to determine the other parametersV i andEi

k . We
have the equation

V i exp~2Ei !

Z
5

ni

nall
, ~3!

wherenall is the number of all amino acids, andni is the
number of amino acids in thei th secondary structure~Table
I!. Therefore, we getVa517.2%, Vb511.8%, andVcoil
571.0%. In the early work of Chan and Dill@28#, under 2D
lattice model, it is found that the average proportion of s
ondary structure is high~about 50% to 70%! in the compact
conformations. But under an off-lattice model, Socciet al.
@29# found that compactness is not sufficient to create s
ondary structures. In the present result, the proportion of s
ondary structures in compact conformations (Va andVb) is
smaller than the result of Chan and Dill based on latt
model, and bigger than the result of Socciet al. based on
off-lattice model. It indicates that real protein is a hybrid
lattice and off-lattice models, because the chemical bo
have favorable directions.

Similar to Eq.~3!, we have the equation

V i exp~2Ei
k!

Zk
5

ni
k

nall
k

, ~4!

wherenall
k is the number of all thekth kind of amino acid,

andni
k is the number of thekth kind of amino acid in thei th

secondary structure. Thus we can get the value ofEi
k ~Table

I!.
From the work of Liet al. @6#, hydrophobicity of a resi-

due is related to a parameterhi . We showEi
a and Ei

b as
functions ofhi in Fig. 2. Ei

a andEi
b for most of the hydro-

phobic residues (hi,22.0) are smaller than21, which
means that most hydrophobic residues tend to forma helix
andb sheet. For polar residues (hi.21.5), the distribution
of Ei

a and Ei
b is wide. Some residues tend to forma helix

and b sheet (Ei
a ,Ei

b,21.0), while some tend to breaka
helix and b sheet. EvenEi

a and Ei
b of proline andEi

a of
glycine are bigger than zero. This result is reasonable: m
coils are on the surface and polar residues tend to appea
the surface, so on average,Ei

a andEi
b of polar residues are

bigger than those of hydrophobic residues that tend to h
themselves in the core.

III. CLASSIFICATION OF AMINO ACIDS

The work on classification of amino acids of Wang a
Wang @14# is completely based on MJ matrix. Therefor
their classification is mainly based on hydrophobicity
7-3
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HU CHEN, XIN ZHOU, AND ZHONG-CAN OU-YANG PHYSICAL REVIEW E65 061907
amino acids@6#. The structural characteristics of a residue
protein’s native structure include:~1! Is the residue on the
surface or in the core?~2! Is the residue part ofa helix, b
sheet, or coil? The first question is related to the residu
hydrophobicity, and the second one is related to its ener
in a helix andb sheet, which are calculated in the form
section.

Here we use both the hydrophobicities of amino acids
their different energies ina andb structures to classify the
20 kinds of amino acids. Now each amino acid is related t
three-dimensional energy vector whose components inc
hydrophobicityhi , energy ina helix Ea , and energy inb
sheetEb . The methods to obtain these parameters are sim
~method of MJ and method in the former section!, and their
units are allkBT0. Therefore, we can treat these three co
ponents equally to classify the 20 kinds of amino acids.
use the optimization clustering algorithm@30# to classify
amino acids.

In the optimization clustering method, the number
groups is fixed asg, and we minimize the target function

E5 (
m51

g

(
l 51

nm

dml,m
2 , ~5!

wheredml,m is the Euclidean distance between thel th amino
acid in themth group and the centroid of the group,nm is the
number of amino acids inmth group. We use the multica
nonical Monte Carlo~MC! algorithm @31# to obtain the glo-
bal minimum ofE, Emin . The details of the method wil
appear in another paper@32#.

The results are shown in Table II. Wheng519, 18,
glutamine~Q! and glutaminic acid (E), asparagine~N! and
aspartic acid~D! agglomerate first. Because structures ofQ
and E, N, andD are similar, their roles in the native struc
tures of proteins are similar too. ThoughE andD(Q andN)
are both charged~polar! residues, they do not aggregate
the same group untilg52 when the 20 amino acids ar
classified to hydrophobic and polar groups. For protein fo
ing problem, the classification of amino acids by chemi
nature is not appropriate to simplify the amino acid alphab
The size and structure of the side chain are also impor

FIG. 2. Ei
a and Ei

b as functions ofhi for 20 kinds of amino
acids.
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factors to determine the behavior of amino acid. Our clas
fication is based on the behavior of the amino acids, and
structure information is not needed.

In optimization clustering method,Emin decreases with
increasing the number of groupsg. Plotting Emin againstg
can give some suggestive ‘‘best’’ number of groups.Emin as
a function ofg is shown in Fig. 3. We can see wheng55 to
15, there is a linear relation between ln(Emin) and g. When
g51 to 4, ln(Emin) is bigger than the linear prediction, whil
wheng516 to 19, ln(Emin) is smaller than the linear predic
tion. Therefore, the result indicates that a proper numbe
groups is 5 which is the same as Wang’s result, but
partition is different.

In multicanonical MC simulation, not only the best par
tion with Emin , but also the partition withE just above
Emin (E1) is obtained. Similar to energy level structures, w
call the best partition withEmin ground state, and call the
partition with E1 the first excited state. The gapDE5E1
2Emin as a function of the number of groupg is shown in
Fig. 3 too. The biggerDE is, the more reliable the bes
partition is. The pointDE(g52)51.21 is much bigger than
the others, thus it is out of the figure. Therefore, the b
partition withg52 is very robust. In this partition, 20 amin
acids are divided to hydrophobic group and polar group, a
the partition is the same as that of Li,et al. @6#. This result
confirms that hydrophobic interaction is the most importa
driving force for protein folding. The simplest heteropolym
model of protein, HP model, grasps the most important d
ing force for protein folding. For other partitions withg.2,
there are two peaks on theDE(g) curve, one peak withg
55, the other withg59. The two peaks indicate that mayb
dividing 20 amino acids into 5 or 9 groups is desirable. T
suggestive group number 5 is in agreement with the re
discussed in the preceding paragraph. We can also find
ln(Emin) with g59 is just a little smaller than the linea
prediction.

IV. LATTICE MODEL AND CALORIMETRIC
COOPERATIVITY

According to the above results, we introduce a model
protein folding which is an extension of the HP model or t

FIG. 3. Results of the classification of 20 amino acids us
optimization clustering method. Open squares show theEmin @Eq.
~5!# as a function of the number of groups~according to left axis!,
and filled squares show theDE as a function of the number o
groups~according to right axis!.
7-4
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CLASSIFICATION OF AMINO ACIDS BASED ON . . . PHYSICAL REVIEW E65 061907
‘‘helical-HP model’’ of Thomas and Dill@33#. We call it
HP-ab model. In HP-ab model, there are six kinds of res
dues,H-a, H-b, H-coil, P-a, P-b, and P-coil residues.
These six letters do not correspond to the classification re
in the former section. They are conceptually artificial. T
Hamiltonian of a given sequence$s i% now takes the form

H5(
i , j

Es is j
C~ i , j !1(

i
Ea

s iAi1(
i

Eb
s iBi , ~6!

where the first term is the same as that of the HP mo
which comes from the hydrophobic interaction; and the s
ond and third terms are the energy to forma andb second-
ary structures.Es is j

, Ea
s i , and Eb

s i are determined by the

six-letter sequence$s i%, while C( i , j ), Ai , and Bi come
from the conformation.Es is j

is hydrophobic interaction be

tween residues i and s j , the values are set as:EHH5
23.3, EHP522.0, andEPP521.0 @34,35#. Considering the
relative strength of hydrogen bonds and hydrophobic in
actions, we setEa

s i520.5 for H-a and P-a residues, and

Ea
s i50 for other residues. Similarly,Eb

s i520.5 forH-b and

P-b residues, andEb
s i50 for the others. If thei th and j th

residues are nearest neighbors in the conformation andi , j
are not adjacent along the chain,C( i , j )51, andC( i , j )50
otherwise.Ai51 (Bi51) if the i th residue is part of ana
helix (b sheet!, and zero otherwise.

We use 2D square lattice model and enumeration met
to obtain thermodynamics property of HP-ab model. In 2D
square lattice, a protein is simplified as a sequence of be
in self-avoiding-walk conformation.a helices andb sheets

TABLE II. Results of optimization clustering method based
hi , Ei

a, andEi
b of each amino acid. The first column indicated t

number of groups.
06190
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can be identified by their special patterns in thecontact map
@26,28#. A conformation of a chain with lengthN corre-
sponds to anN3N matrix in the contact map. If the residue
i and j are nearest neighbors in space and nonadjacent a
the chain, we say that there is atopological contactbetween
them. If there is a topological contact between thei th and the
j th beads, the corresponding matrix elementC( i , j ) of the
contact map is 1, and otherwise it is 0. Matrix eleme
C( i , j ) is just the same asC( i , j ) in Eq. ~6!. Figure 4 shows
an example of a compact conformation together with its c
tact map. The patterns ofa helix andb sheet are indicated
by arrows. In the present work, the smallesta helix is com-
posed of six beads, and the smallestb sheet~parallel and
antiparallel! is composed of four beads. Under this defin
tion, there is the case in which one bead is both a part o
a helix and a part of ab sheet, which is not true in rea
protein. Therefore, in this case, we set the bead apart of tha
helix, not apart of theb sheet.

Proteins are not random sequences of amino acids@35#,
and they are a small subset of all possible sequences.
native conformation of protein must be the energy minimu
in a funnel-like energy landscape. The easiest way to ob
a proteinlike sequence is to design a sequence with a ta
conformation as its native conformation@36#. Here we select
a target conformation including botha helix and b sheet,
and there is a small coil connecting them@Fig. 5~a!#. To
design a sequence with the target conformation as its na
state, we select the simplest design strategy: the colo
method@37#, which determines the type of each unit on
according to the position of the unit in the target conform
tion. We assignH residues to the units in the core, andP
residues to those on the surface. Also, the units ina helix (b
sheet! are assigned asH-a or P-a (H-b or P-b) residues,
and the other units are assigned asH-coil or P-coil residues.
The designed HP-ab sequence is shown in Fig. 5~b!. H-coil
letter does not appear in the designed sequence. The

FIG. 4. An example of conformation together with its conta
map~open lattice represents 0). The specific patterns ofa helix and
b sheet are indicated by arrows. Contacts (4,11) and (5,10) do
form a b sheet because residues 4 and 5 are part ofa helix.
7-5
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HU CHEN, XIN ZHOU, AND ZHONG-CAN OU-YANG PHYSICAL REVIEW E65 061907
signed HP sequence is shown in Fig. 5~a! together with the
target conformation. The target conformation is the grou
state for both the designed HP-ab sequence and the de
signed HP sequence.

We enumerate all the 301 064 158 conformations a
calculate the thermodynamic properties of the designed
quences by the standard formulas of canonical ensemble
compare the results of HP and HP-ab model. Figure 6
shows the specific heat capacity of the two designed
quences and the probability of native conformation. T
transition is much sharper for HP-ab model.

Experimentally, most small single domain proteins can
described by a two-state model. Often it can be found t
the van’t Hoff enthalpyDHvH around the transition midpoin
is approximately equal to the calorimetric enthalpyDHcal of
the entire folding transition@20,21#. DHvH /DHcal takes the
form

DHvH /DHcal52TmaxAkBC~Tmax!/DHcal , ~7!

where specific heat capacityC(T) is maximum at T
5Tmax, kB is Boltzmann constant that is set as 1 in o
calculation. It has been found that contact energies can
reproduce the calorimetric two-state picture@20,21#. Even
some works show that there are three phases: random

FIG. 5. ~a! The target conformation with botha helix andb
sheet. The color of units indicts the designed HP sequence~black-
H, white-P). ~b! The designed sequence for HP-ab model.

FIG. 6. Heat capacityCv as a function of temperature for bot
the designed HP sequence and HP-ab sequence in Fig. 5. The inne
figure shows the proportion of native structure (P0) as a function of
temperature.
06190
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molten globule, and native conformation@35,38#. Thus, there
will be two transitions with decreasing temperature. Fro
Fig. 6, we can see that the transition of HP model happen
a wide temperature range of more than one order of ma
tude. TheCv curve for the HP model is nearly the sum
two Gaussian functions that reflect the two transitions, o
from random coil to molten globule and the other from mo
ten globule to native conformation. While theCv curve for
HP-ab model is one Gaussian function, and the transition
much sharper.DHvH /DHcal is 0.184 for the HP sequence
and 0.276 for the HP-ab sequence. Though the HP-ab se-
quence here does not satisfy the calorimetric two-state c
rion, it has changed a three-state picture of HP model t
two-state picture. The size of the example studied here
only 22 that is very small. If we study a 3D model with th
size big enough, the transition will be much sharper, and
thermodynamic behavior will be closer to experimental
sults.

V. DISCUSSION

From the known structural information of proteins, th
secondary structure related energy termsEi

a andEi
b for each

amino acid are obtained. Here the correlation in a seque
is ignored, and the obtained energy termsEi

a andEi
b are only

related to the state of one amino acid. But the state of
amino acid in a protein is influenced by the whole sequen
especially the neighboring amino acids. Under the appro
mation of ignoring the chain connectivity, the chain conne
tivity is treated as the environment of amino acids that
duces the distribution of amino acids in the three statesa,
b, and coil!. There is a typical length fora helix and b
sheet, i.e., the formation ofa helix (b sheet! needs severa
continuousa helix (b sheet! favorable amino acids. There
fore, the chain connectivity is also important for the form
tion of a helix andb sheet. The effect of the chain conne
tivity on the formation of secondary structures needs furt
study. A simple extension of the present work is to study
structure of two or three adjacent amino acids along pro
sequence.

Based on the physical source, the interactions in prote
can be classified to bond energy~mainly bond angle! and
noncovalent interactions~van der Waals, electrostatic, hydro
gen bonds, and hydrophobic interactions!. These interactions
all serve to stabilize protein’s native structure. There are
only long-range interactions between two residues apart f
each other along the sequence, but also short-range inte
tions related to the conformations of the residue itself and
adjacent residues along the sequence. Long-range inte
tions mainly come from noncovalent interactions~disulfide
bond between Cys residues also belongs to long-range in
action!, while short-range interactions mainly come fro
bond angle energies and hydrogen bonds between sequ
adjacent residues. The widely used MJ matrix only gra
long-range interactions. In our work, energies in second
structuresEi

a and Ei
b are short-range interactions that a

related to the local conformation of the chain. Upon residu
hydrophobicity,Ei

a andEi
b , the classification of amino acid

is consistent with some known results, and gives some s
7-6
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gestions. The classification is based on the behaviors
amino acids in protein’s native structure. Our results are
ferent from the traditional classification of amino acids bas
on their chemical nature and side chain structures. The
son is that the environment around one amino acid in p
tein’s native structure is different from water solution
amino acid monomers. Our classification is more instruct
to protein folding problem.

The consistency of long-range interaction and short-ra
interaction makes the thermodynamic behavior of model p
teins closer to experiments@39,40#. It indicates that cooper
c

ct

e

.

P.

,

A.

ev
,

06190
of
f-
d
a-
-

e

e
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ativity of protein folding comes partly from the consisten
among various energy terms, such as long-range and s
range interactions.
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