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It has been found that the 20 kinds of amino acids have different frequencies of occurrenge @nd coil
structuregP. Y. Chou and G. D. Fasman, Biochemisir§; 211 (1974]. Based on more known structures of
proteins, frequencies for each amino acidviand 8 secondary structures are recalculated. Next step, under the
approximation ignoring the chain connectivity of proteins, energy parameters to doamd B8 secondary
structures for each amino acid are obtained. According to the hydrophobicity and energiesadB second-
ary structures, 20 kinds of amino acids are classified. The results suggest that dividing amino acids to five or
nine groups is desirable. At last, a protein model considering both two-body hydrophobic interaction and
one-body energy to form secondary structures, hydrophobic-pglanodel, is introduced. It is shown that the
consistency among various energy terms makes the cooperativity of protein folding closer to the experiments.

DOI: 10.1103/PhysReVE.65.061907 PACS nuniher87.14.Ee, 87.15.Aa, 02.70.Rr

[. INTRODUCTION polar and hydrophobic amino acids, which is consistent with
an HP(hydrophobic-polarmodel.

Native structure of a protein is the global minimum of More than 20 years ago, Chou and Fansriahfound
free energy1,2). To study protein folding problems theoreti- that different amino acids have different opportunities to ap-
cally, an appropriate description of both the structure of aear in different regular secondary structureshlix andg
protein and the intramolecular interactions is necessary. Preheel. The result has been used to predict the secondary
teins are composed of 20 different kinds of amino acids, eachtructures of polypeptidgs$]. « helix and g sheet are both
amino acid contains several atoms. The interactions betwedacal conformations. Local conformation of main chain is
amino acids are very complicated. Molecular mechanicslescribed by the dihedral anglgs and ¢ [1,9]. In Ram-
force field is useful for studying the structures and dynamicsichandran plots, theg() distributions are clustered into
of proteins near their native states. However, it is not approthree core regions correspondingdo 3, and«_ (left-hand
priate to study the complete conformation space of a proteim) structuresq| region is much smaller than the other two.
because of the current computer capability. And it is difficult Therefore, different ¢,¢) distributions for different amino
to tell us what kind of interaction is important for protein acids reflect their different affinities te helix andg sheet.
folding. The statistical result of Chou and Fansman is the coarse-

Now most of the theoretical studies of protein folding grained result of Ramachandran plot and can be easily quan-
involve both simplified protein models and effective interac-tified. In this paper, like the work of Miyazawa and Jernigan
tions. In simplified models, several atoms, such as a residug5], we can obtain a one-body energy term for each amino
are treated as a bead. The potentials of some models aaeid in o helices andB sheets. To obtain this secondary-
artificial, such as Ganodel[3] and random energy model structure-related energy term, more recent data are counted
[4], while some potentials come from statistical results ofas Chou and Fansman.
known structures of proteins. Now three-dimensio(&D) One source of the complexity of protein folding problem
structures of more than ten thousand proteins have been ols the fact that there are 20 kinds of amino acids. Tradition-
tained by x-ray or nuclear magnetic resonance experimentallly, the 20 kinds of amino acids are classified to several
methods. Statistics of these known structures can tell uslasseghydrophobic, charged, and polaccording to their
some information about the hidden interactions. Miyazawachemical naturg10]. This classification is based on the
and Jernigan obtained a two-body inter-residue interactiochemical property of amino acids in water. But the environ-
matrix (MJ matrix) from the numbers of residue-residue con- ment around one amino acid in protein’s native structure is
tacts observed in native structures of globular prot¢fis different from water solution of amino acid monomers.
The residues in the core of native structure have more resiFherefore, this classification is not appropriate to describe
dues in contact with them than the residues on the surfacéhe roles of amino acids in protein’s native structure. Re-
Hydrophobic residues like to avoid water molecules and hideently, both experimentalists and theoreticians have interests
themselves in the core, while polar residues like to contacto find out how manyless than 2ptypes of amino acids are
water molecules and appear on the surface. Therefore, in Mehough to reconstruct protein’s native structiifid—15.
matrix, interactions between hydrophobic residues are strorSimplifying the 20-letter alphabet to a two-letter alphabet
ger than those between polar residues and those betwesnch as the HP model is the limit of simplification, because
hydrophobic residue and polar residue. From MJ matrix, Lione-letter homopolymer does not have unique native struc-
et al. [6] found that the driving force of protein folding tures like proteins. However, experimental work of Riddle
comes from hydrophobic interaction and a force of demix-and co-workerd11] showed that more than two kinds of
ing, and the 20 kinds of amino acids can be classified t@mino acids are needed for proteins to fold to their native
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structures. Theoretically, based on the MJ interaction matrix, TABLE I. The statistical results for 20 kinds of amino acids.
Wang and Wang's work14] showed that a five-letter alpha- The hydrophobic parametar comes from the paper of it al. [6].
bet may be a good choice to reconstruct protein’s native
structure and their result is in agreement with the suggestioName No.of Residues ResiduesE, E;  h
of Riddleet al. Recently, work of Zheng and co-workdis] residues ina helix in g sheet kgT) (kgT) (kgT)
based on MJ matrix and blocks substitution matrix
(BLOSUM) [16] obtained different results. The result of ex- Ala (A) 19376 8728 3093 —1.56 —0.91 —1.43
. ; . ; ; Arg (R) 12274 4589 2374 —1.27 —0.99 —0.85
perimental work is confined to the studied protein. ThereforeAsn (N) 11314 2590 1488 —0.39 —022 —0.87
it is unknown if the result is the same for other proteins. ' ' '

Most of the theoretical works are based on the simpliﬁedo‘SIO (D) 14419 3817 1587 ~0.56 —0.06 ~0.61
contact energy between residues. Recently, Vendruscolo afys ©) 4526 1008 1288 —062 —1.25 —2.34
co-workers[17] tried to learn the energy parameters from Gln (Q) 9834 4032 1630 —1.38 —0.86 —0.69
crystal structures of proteins. They found that only pairwise®V (E) 16135 6939 2430 —1.44 -0.77 —0.55
contact interaction is not sufficient to stabilize the nativeGly (G) 18127 2445 2556 0.26 -0.16 —0.99
states of proteins. The simplified amino acids alphabet andfis (H) 5785 1579 1203 -0.77 -0.88 —1.33
interactions not only need to stabilize the native structure ofle (1) 14065 4829 5187 —1.59 —2.05 —3.27
protein, but also need to satisfy the thermodynamic and kikeu (L) 21713 9232 5161 —1.65 —1.45 -3.70
netic property of real proteins. Folding transition of mostLys (K) 15612 5495 2720 -1.12 -0.80 —-0.42
global single domain proteins is calorimetric two stateMet (M) 5330 2131 1122 —1.44 —1.18 —2.79
[18,19. The quantitative criterion for calorimetric two-state Phe ) 9959 3108 3094 —1.23 —1.60 —3.65
transition is that the van’t Hoff enthalpp3H,, calculated Pro (P) 11383 1410 1032 0.43 0.36—-1.03
at the peak of the specific heat, is approximately equal to thger (5) 15152 3620 2684 —0.52 —0.61 —0.80
calorimetric enthalpyAH., of the entire transition, i.e., Thr (T) 14202 3425 3667 —0.69 —1.14 —1.05
AH,4/AHc4~1. Recently, it was found that the pairwise Trp (W) 3621 1226 992 —1.28 —1.45 —257
contact interaction is insufficient to satisfy the calorimetricTyr (v) 8819 2593 2837 —1.15 —1.62 —2.07
criteria for two-state folding20,21] even a 20-letter alpha- a1 (v) 17202 5011 6931 —1.37 —2.07 —2.70
bet. So some other energy components are necessary.  p 248848 77807 53076 —1.00 —1.00

In the present work, we try to classify the 20 kinds of
amino acids according to their hydrophobicities and different
affinities to @ helix and 3 sheet. Conceptually based on the 1419 protein entries in DSSP, and count amino acids in the
result of classification, we introduce a model of protein fold-chains included in the pdbselect database. The results are
ing, in which not only two-body hydrophobic interaction like shown in Table I. The original work of Chou and Fansman
that in the HP model, but also a one-body energy componergnly involved 15 proteins, and the number of all amino acids
related to the formation of secondary structures is considis 2473. Now the sampler space is 100 times bigger with
ered. This energy term can lead thermodynamic behaviorgtal number of amino acids 248 848. Here we consider only
closer to experimental results. « helices ang3 sheets, and all others are thought to be coil.
The result is approximately consistent with that of Chou and
Fasman[7] (Fig. 1). However, in the present results most
frequencies of amino acids i sheets are bigger, and the

Since the work of Chou and Fansméri, the data of frequencies inx helices are smaller than the results of Chou
protein 3D structures have increased many times. And som@nd Fasman. Because the number of samples is 100 times
secondary databases have been established. Kabsch andre, the present results are more accurate.
Sander[22] designed a program to standardize secondary

II. ENERGY IN SECONDARY STRUCTURES

structure assignment by pattern recognition of hydrogen 0.6 y - - T -
bonds. They established the database of secondary structure m  frequencies of amino acids in o helix
in proteins(DSSP that assigns secondary structures for all 05 O frequencies of amino acids in p sheg i
protein entries in the protein data ba(RDB). Therefore, 04l o a " |
DSSP is an appropriate database for us to count the appear- o _
ance frequencies of different amino acids in different second- 5 03l E .: i
ary structures. 2 g a " .

There are more than ten thousand entries in PDB, and & g2} o, =, .
most of them are homologous sequences. Therefore, we need o . -
not count all the proteins in PDB. Hobohm and San@sj 01F o " -
established the pdbselect database, a subset of PDB that does

not contain homologous sequences. Pdbselect database offers 0-% o 03 0z 03 oa 05 0.6
a representative selection that is about a factor of 5 or 6 ' ' F!esullts of Chéu &Fan;man ' '
smaller than PDB database. Here we use the pdbselect data-

base Feb. 2001 release. It contains 1520 chains composed oOf FIG. 1. The statistical results of Chan and Fasman vs our results
proteins, DNAs, and RNAs. We download the correspondinghased on more structural data.
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Under coarse-grained treatment of local conformationsprientation of the interacting groups. In a secondary struc-
each amino acid has three statashelix, 8 sheet, and coil. ture, regular arrangement of the residues is advantageous for
Not considering the 3D structure of a protein, we pay attenthe formation of main chain hydrogen bonf5,26. Ac-
tion to the secondary structures in the protein’s native struceording to the strength of the hydrogen bdi2d], we set the
ture. Then the native structure can be described by a oneverage energy advantage of one amino acid in regular sec-
dimensional vector whose component is the state of eacbndary structures, such as helix and 8 sheet, as—1;
amino acid. There are three kinds of states 3, and coi) and energy of amino acid in coil as zero, i.&,=
the amino acid can occupy. We assume that there are thrég,= —1, Econ=Ef,;=0. We can use the statistical re-
effective energy levels for each amino acid accordingrto sults above to determine the other parameferandEY . We
helix, 8 sheet, and coil states, respectively. The degeneraciegve the equation
of the three states hold as constants for all amino acids, while
the three energy levels are different for different amino acids. Q,exp—E;)) n

Each amino acid distributes in these three kinds of states, Tz g )
the distribution can be obtained from the observed native
structures. The observed distributions of amino acids in thgvheren,,, is the number of all amino acids, amg is the
three states can reflect the effective energy levels. number of amino acids in thieh secondary structur@able

In a certain protein, the state of each amino acid is deter), Therefore, we gef),=17.2%, Q,=11.8%, andQ,;
mined not only by the amino acid itself, but also by the =71.0%. In the early work of Chan and D8], under 2D
whole protein sequence. To stabilize the native structurglattice model, it is found that the average proportion of sec-
there are correlations in the sequence of a prd@# But,  ondary structure is higtabout 50% to 70%in the compact
the statistical results are based on more than one thousagdnformations. But under an off-lattice model, Soetial.
proteins. Therefore, there is no significant contribution from[29] found that compactness is not sufficient to create sec-
the specific amino acid sequence of a certain protein in thendary structures. In the present result, the proportion of sec-
statistical results. The statistical results can reflect the thregndary structures in compact conformatiofis,(and Q) p) is
hidden effective energy levels for each amino acid. The apsmaller than the result of Chan and Dill based on lattice
proximation of ignoring the correlation in a sequence, or themodel, and bigger than the result of Soetial. based on
chain connectivity, can be treated as a first-order approximaoff-lattice model. It indicates that real protein is a hybrid of
tion to obtain the hidden effective energy levels from thejattice and off-lattice models, because the chemical bonds
known structures. The work of Miyazawa and Jernif@lis  have favorable directions.

also based on this approximation. Similar to Eq.(3), we have the equation
First, not distinguishing which amino acid is concerned,
we introduce a partition function to describe the amino acids Q; exp(— EF) n:(
distributing in the states of helix, 8 sheet, and coil g). — T o (4)
k n

The partition function takes the form all

wheren¥, is the number of all théth kind of amino acid,

Z:i_;ﬁ  Qexp—Ey), (1) andn is the number of théth kind of amino acid in theéth

o secondary structure. Thus we can get the vaIuEikoﬂable

where Q; is the degeneracy of thith kind of secondary - . o .
structure ; is normalized, so thak;_, z.Q;=1), E;is From the work of Liet al. [6], hydrophobicity of a resi-
the energy advantage of thith kind of secondary structure due is related to a parametdy. We showE and E/ as
with unit kgTo. kg is Boltzmann constant arify is absolute ~ functions ofh; in Fig. 2. E¥ andEf for most of the hydro-
physiological temperature. Similarly, we can construct thephobic residues ;<—2.0) are smaller than-1, which
partition function of one kind of amino acid. The degenera-means that most hydrophobic residues tend to fermmelix
cies of the three states are the same for all amino acids. Thend 8 sheet. For polar residues; —1.5), the distribution

partition function of thekth amino acid takes the form of E¥ andEf is wide. Some residues tend to forahelix
and B sheet E® ,Ef<—1.0), while some tend to break
Zi= > Qexp—EN), ) heli>§ and 8 s_heet. Everk;" and E,ﬁ of prqline andE;" of

i=a.B.c glycine are bigger than zero. This result is reasonable: most

coils are on the surface and polar residues tend to appear on
whereE{ is the energy of amino aciklin theith secondary the surface, so on average? andE” of polar residues are
structure. bigger than those of hydrophobic residues that tend to hide

In regular secondary structures (helix and 8 sheel,  themselves in the core.

hydrogen bonds always exist between the main chains. The
hydrogen bonds are important for the stability of regular sec-
ondary structures. Among the inter-residue interactions in
proteins, such as van der Waals interactions, electrostatic in- The work on classification of amino acids of Wang and
teractions, hydrophobic interactions, and hydrogen bondsjNang [14] is completely based on MJ matrix. Therefore,
only the formation of hydrogen bonds depends on the specidheir classification is mainly based on hydrophobicity of

IIl. CLASSIFICATION OF AMINO ACIDS
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FIG. 3. Results of the classification of 20 amino acids using
FIG. 2. E* and Ef as functions ofh; for 20 kinds of amino  optimization clustering method. Open squares showghg, [Eq.
acids. (5)] as a function of the number of groufeccording to left axis
and filled squares show th&E as a function of the number of
amino acidg6]. The structural characteristics of a residue ingroups(according to right axis

protein's native structure includel) Is the residue on the factors to determine the behavior of amino acid. Our classi-

surface or in the cort_aGZ) Is the_ resldue part ok helix, '8 Jfication is based on the behavior of the amino acids, and the
sheet, or coil? The first question is related to the residue Structure information is not needed

hydrophobicity, and the second one is related to its energies In optimization clustering methocE,;, decreases with

in « helix and B sheet, which are calculated in the former increasing the number of grougs Plotting E,,,, againstg

section. L _ , can give some suggestive “best” number of grouls,, as
Here we use both the hydrophobicities of amino acids and, f,nction ofg is shown in Fig. 3. We can see whgr5 to

their different energies i and g structures to classify the 15 there is a linear relation between i, andg. When

20 kinds of amino acids. Now each amino acid is related to & =1 to 4, In(E,,,;,) is bigger than the linear prediction, while
three-dimensional energy vector whose components includgheng=16 to 19, In€,y,;,) is smaller than the linear predic-
hydrophobicityh;, energy ina helix E,, and energy in3  tion. Therefore, the result indicates that a proper number of
sheetE ;. The methods to obtain these parameters are similagroups is 5 which is the same as Wang’s result, but the
(method of MJ and method in the former secjioand their  partition is different.

units are allkgT,. Therefore, we can treat these three com- In multicanonical MC simulation, not only the best parti-
ponents equally to classify the 20 kinds of amino acids. Weion with E.;,, but also the partition withE just above
use the optimization clustering algorithf30] to classify  Enin (Ey) is obtained. Similar to energy level structures, we

amino acids. call the best partition wittg,;,, ground state, and call the
In the optimization clustering method, the number ofpartition with E; the first excited state. The gapE=E,
groups is fixed ag, and we minimize the target function =~ —Emiy @s a function of the number of grougpis shown in
Fig. 3 too. The biggeAE is, the more reliable the best
9 m partition is. The poinAE(g=2)=1.21 is much bigger than
E= 21 |21 dinims (5  the others, thus it is out of the figure. Therefore, the best
= e

partition withg=2 is very robust. In this partition, 20 amino

. . . . acids are divided to hydrophobic group and polar group, and
wheredy, is the Euclidean distance between tifeamino o partition is the same as that of let al. [6]. This result

acid in themth group ?‘”d.the centroid of the group, is th_e confirms that hydrophobic interaction is the most important
number of amino acids imth group. We use the multica- qyjying force for protein folding. The simplest heteropolymer
nonical Monte CarldMC) algorithm[31] to obtain the glo- - model of protein, HP model, grasps the most important driv-
bal minimum ofE, Eps. The details of the method will ing force for protein folding. For other partitions wit>2,
appear in another papgs2]. there are two peaks on theE(g) curve, one peak witly

The results are shown in Table Il. Whep=19, 18, =5 the other witg=9. The two peaks indicate that maybe
glutamine(Q) and glutaminic acid E), asparagingN) and  dividing 20 amino acids into 5 or 9 groups is desirable. The
aspartic acidD) agglomerate first. Because structuresQdf suggestive group number 5 is in agreement with the result
andE, N, andD are similar, their roles in the native struc- discussed in the preceding paragraph. We can also find that
tures of proteins are similar too. ThoughandD(Q andN) IN(Enin) With g=9 is just a little smaller than the linear
are both chargedpolarn residues, they do not aggregate to prediction.
the same group untiy=2 when the 20 amino acids are
classified to hydrophobic and polar groups. For protein fold- IV. LATTICE MODEL AND CALORIMETRIC
ing problem, the classification of amino acids by chemical COOPERATIVITY
nature is not appropriate to simplify the amino acid alphabet. According to the above results, we introduce a model of
The size and structure of the side chain are also importargrotein folding which is an extension of the HP model or the
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TABLE Il. Results of optimization clustering method based on o helix
h;, E{*, and EZ of each amino acid. The first column indicated the

I
number of groups. 123 4/5 6 78 910111213 1415 16/

not B sheet

1 AHTRQEKNDSGPCYMWVILF I - - P ;

2 AHTRQEKNDSGP CYMWVILF 1 A 3

3 AHTRQEK NDSGP CYMWVILF 1 ¢

4 AHTRQEK NDSGP CYMWV  ILF AR °

5 AHTRQEX NDS GP CYMWV  ILF 7

6 AHT RQEK NDS GP CYMWV  ILF 83— sheet

7 AHT RQEK NDS GP CYMW Iv LF 15 - 1 91’0

8 A HT RQEK NDS GP CYMW Iv LF : 1 11

9 A HT RQEK s 6P ¢y mw v L bl : 12

10 A HT RQEK s e cymw v L |1 : 13

11 AHT RQEK NDS GP CYMW I VLF % i;

12 A HT RQEK NDS GPCY MW I VLF 16

13 A HT RQEK ND SGPCYMW IVLF o

14 A HT RQE KND SGPCYMW IVLF FIG. 4. An example of conformation together with its contact
map(open lattice represents 0). The specific patterns bélix and

12 i ﬁTT ESE E gg z g 11;) g g ﬁ:’d i \\; i 11:: B s?nieeﬁ are indicat:d by arr_ovas. Contgcts (4?11) and _(5,10) do not
form a B sheet because residues 4 and 5 are pat bélix.

17 AHTRQE XND SGPCYMWIVLF

18 AHTRQE KND SGPCYMWIVLF can be identified by their special patterns in tomtact map

19 ABTRQE KNDSGPCYMWIVLF [26,28. A conformation of a chain with lengtiN corre-

20 AHTRQEKNDSGPCYMWIVLF sponds to amN X N matrix in the contact map. If the residues

i andj are nearest neighbors in space and nonadjacent along
“helical-HP model” of Thomas and Dill[33]. We call it the chain, we say that there id@pological contacbetween
HP-a8 model. In HPa3 model, there are six kinds of resi- them. If there is a topological contact betweenittieand the
dues,H-a, H-8, H-coil, P-a, P-8, and P-coil residues. Ith beads, the corresponding matrix eleméxqt,j) of the
These six letters do not correspond to the classification resuontact map is 1, and otherwise it is 0. Matrix element
in the former section. They are conceptually artificial. TheC(i,j) is just the same a&(i,j) in Eq. (6). Figure 4 shows
Hamiltonian of a given sequende;} now takes the form an example of a compact conformation together with its con-
tact map. The patterns af helix and B sheet are indicated
_ _ by arrows. In the present work, the smalleshelix is com-
H=2> EoiajC(i,j)+2 ETA+ E;Bi, (60 posed of six beads, and the smallgssheet(parallel and
=) ' ' antiparalle] is composed of four beads. Under this defini-
tion, there is the case in which one bead is both a part of an
where the first term is the same as that of the HP model

hich ; the hvdrophobic int i dth a helix and a part of g8 sheet, which is not true in real
which comes irom the hydrophobic interaction; and the se proteln Therefore, in this case, we set the bead apart af the
ond and third terms are the energy to foamand 8 second-

o o . helix, not apart of the3 sheet.
ary structuresk, ., E ', andE " are determined by the  prgieins are not random sequences of amino d@Hk

six-letter sequencéo;}, while C(i,j), A;, and B; come and they are a small subset of all possible sequences. The
from the conformatlonE,, o is hydrophobic mteractlon be- native conformation of protein must be the energy minimum
tween residues; and o, the values are set agy= in a funnel-like energy landscape. The easiest way to obtain

—3.3,Eyp=—2.0, andEpp= — 1.0[34,35. Considering the @ proteinlike sequence is to design a sequence with a target
relative strength of hydrogen bonds and hydrophobic interconformation as its native conformati¢d6]. Here we select
actions, we seE i=—0.5 for H-a and P-a residues, and @ target conformation including both helix and 8 sheet,

o o and there is a small coil connecting thdiig. 5a)]. To
E, =0 for other reS|dues SlmllarIjE '=—0.5forH-g and design a sequence with the target conformation as its native
P- /3 residues, ande =0 for the others. If theth andjth  state, we select the simplest design strategy: the coloring
residues are nearest neighbors in the conformationignd method[37], which determines the type of each unit only
are not adjacent along the cha@(i,j)=1, andC(i,j)=0 according to the position of the unit in the target conforma-
otherwise. Aj=1 (B;=1) if theith residue is part of aa  tion. We assigrH residues to the units in the core, aRd
helix (8 sheet, and zero otherwise. residues to those on the surface. Also, the uniig elix (8

We use 2D square lattice model and enumeration methosheet are assigned ad-a or P-a (H-B or P-B) residues,
to obtain thermodynamics property of HEB model. In 2D and the other units are assignedagoil or P-coil residues.
square lattice, a protein is simplified as a sequence of beadshe designed HR¢B sequence is shown in Fig(t5. H-coil
in self-avoiding-walk conformatione helices andB sheets letter does not appear in the designed sequence. The de-

[e3
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22 molten globule, and native conformatifdb,3§. Thus, there
will be two transitions with decreasing temperature. From
Fig. 6, we can see that the transition of HP model happens at
a wide temperature range of more than one order of magni-
tude. TheC, curve for the HP model is nearly the sum of
two Gaussian functions that reflect the two transitions, one
from random coil to molten globule and the other from mol-

@ ten globule to native conformation. While ti@&, curve for
P-B,P-B.P-B,P-B,P-coil,P-coil H-B,H-B,H-B,H-B, P-coil, HP-a 8 model is one Gaussian function, and the transition is
P-coil,H-0,P-0,P-0,H-a,H-01,P-0t,P-0t,H-0, P-0, P-ot. much sharperAH, /AH., is 0.184 for the HP sequence,

(o) and 0.276 for the HR:B sequence. Though the HPB se-

quence here does not satisfy the calorimetric two-state crite-
rion, it has changed a three-state picture of HP model to a
two-state picture. The size of the example studied here is
only 22 that is very small. If we study a 3D model with the

signed HP sequence is shown in Figa)stogether with the size big enough, the transitilon will be much sharper, and the
target conformation. The target conformation is the groundn&rmodynamic behavior will be closer to experimental re-

state for both the designed HEB sequence and the de- SUlts:
signed HP sequence.

We enumerate all the 301 064 158 conformations and V. DISCUSSION
calculate the thermodynamic properties of the designed se-

. From the known structural information of proteins, the
guences by the standard formulas of canonical ensemble. V\éeecondar structure related energy teffisand E5 for each
compare the results of HP and Hi? model. Figure 6 y 9y !

shows the specific heat capacity of the two designed s@mino acid are obtained. Here the correlation in a sequence

i B
quences and the probability of native conformation. The'S ignored, and the obtained energy tefBfsandE” are only

transition is much sharper for HR8 model related to the state of one amino acid. But the state of one

Experimentally, most small single domain proteins can béamino' acid in a protein ?S influgnced .by the whole sequence,
described by a two-state model. Often it can be found thagSPecially the neighboring amino acids. Under the approxi-
the van't Hoff enthalpyAH,,,, around the transition midpoint mation of ignoring the chain connectivity, the chain connec-

: . : ; tivity is treated as the environment of amino acids that in-
is approximately equal to the calorimetric enthalph ., of AR ) S

the entire folding transitiof20,21. AH,4/AH_,, takes the duces the _dlstrlbutlo_n of amino acids in the thr_ee states (
form B, and coi). There is a typical length forr helix and 8

sheet, i.e., the formation af helix (8 sheel needs several

AH, 1 /AH g =2T /—kBC(T JIAH ., 7) continuousa helix (8 sheet favorable amino acids. There-
0 ca max ma ca fore, the chain connectivity is also important for the forma-

where specific heat capacitZ(T) is maximum atT tion of « helix andB sheet. The effect of the chain connec-

=Tmax, Kg is Boltzmann constant that is set as 1 in ourtivity on the formation of secondary structures needs further
calculation. It has been found that contact energies canngtudy. A simple extension of the present work is to study the
reproduce the calorimetric two-state picti20,21]. Even  structure of two or three adjacent amino acids along protein

some works show that there are three phases: random cofi€quence. _ _ _ _ _
Based on the physical source, the interactions in proteins

can be classified to bond energyainly bond angle and
noncovalent interactionwan der Waals, electrostatic, hydro-
gen bonds, and hydrophobic interactiprEhese interactions
all serve to stabilize protein’s native structure. There are not
only long-range interactions between two residues apart from
each other along the sequence, but also short-range interac-
tions related to the conformations of the residue itself and the
/' adjacent residues along the sequence. Long-range interac-
af ] Y '_*:'_':;';"g’fﬂe; " tions mainly come from noncovalent interactiofssulfide
f o bond between Cys residues also belongs to long-range inter-
P e action, while short-range interactions mainly come from
bond angle energies and hydrogen bonds between sequence-
0.1 1 10 100 adjacent residues. The widely used MJ matrix only grasps
Temperature long-range interactions. In our work, energies in secondary
FIG. 6. Heat capacity, as a function of temperature for both Structurest; and E/ are short-range interactions that are
the designed HP sequence and kB-sequence in Fig. 5. The inner related to the local conformation of the chain. Upon residue’s

figure shows the proportion of native structuf,) as a function of hydrophobicity,E* andEf, the classification of amino acids
temperature. is consistent with some known results, and gives some sug-

FIG. 5. (a) The target conformation with botl helix and 8
sheet. The color of units indicts the designed HP sequérlaek-
H, white-P). (b) The designed sequence for KB model.
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gestions. The classification is based on the behaviors ddtivity of protein folding comes partly from the consistency
amino acids in protein’s native structure. Our results are difamong various energy terms, such as long-range and short-
ferent from the traditional classification of amino acids basedange interactions.

on their chemical nature and side chain structures. The rea-

son is that the environment around one amino acid in pro-

tein_’s nat_ive structure is differen_t_ fro_m v_vater so_lution (_)f ACKNOWLEDGMENTS
amino acid monomers. Our classification is more instructive
to protein folding problem. The authors thank C. Tang for the sharing of data and

The consistency of long-range interaction and short-rangeseful suggestions. Numerical calculations are performed at
interaction makes the thermodynamic behavior of model prothe State Key Lab of Scientific and Engineering Computing
teins closer to experimen{89,4Q. It indicates that cooper- and CHPCC.
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